Sound Transit Central Link Light Rail, Public Address System

Paul L. Burgé INCE.Bd.Cert, Acentech, Inc. Michael S. Pincus, PE, RCDD, Acentech, Inc.

TRB ADC40 2005

Acentech

Summer Meeting, Seattle Washington

Presented By:

Paul Burgé 619/243-2847 paul_burge@urscorp.com

Sound Transit Central Link Light Rail Project

- Current downtown BRT underground stations being upgraded to serve BRT and light rail vehicles
- Several all new elevated and at-grade light rail stations being constructed

ST Central Link Light Rail System Map

Current Initial Segment from downtown south to near airport (including existing BRT stations)

Acentech

PA System Design Challenges

- Strict interpretation of NFPA 72, National Fire Alarm Code
- High anticipated background noise levels
- Large, hard spaces
- Significant architectural constraints regarding speaker size and placement

NFPA 72 Requirements for Emergency Communications Systems

- Speech Transmission Index (STI) >.55
- SPL at least 15 dB above ambient level;
 70 dB minimum, 120 dB maximum

Sound Transmission Index (STI)

- Index value between 0-1 used to quantify speech intelligibility
- Factors influencing STI
 - Sound Power
 - Reverberation Time
 - Background Noise Level
 - Room Shape

Sound Transmission Index (STI)

STI Value	Speech Intelligibility
0.6 - 1.0	Very good
0.45 - 6	Good
0.3 - 0.45	Poor
0.0 - 0.3	Unacceptable

Measured Reverberation Times

1/3 Oct.	Reverberation Time (seconds)					
Band Center	International	Pioneer Sq.		University	Westlake	
Freq. (Hz)	platform	platform	mezzanine	platform	platform	
200	3.6					
250	3.0	3.5	1.5		3.0	
315	3.5	3.2	1.9		2.9	
400	3.2	4.3	2.3	2.8	2.5	
500	3.9	3.5	1.9	2.3	2.7	
600	4.1	2.8	2.2	2.2	2.5	
800	4.1	2.8	2.1	2.1	2.6	
1000	3.2	3.0	2.1	2.7	2.8	
1250	3.2	3.0	2.0	2.6	2.4	
1600	3.1	3.0	1.9	2.4	2.4	
2000	3.0	2.8	2.0	2.4	2.3	
2500	2.7	2.5	1.9	2.4	2.1	
3150	2.3	2.6	1.7	2.1	1.9	
4000	1.9	2.1	1.5	1.8	1.6	
5000	1.6	1.7	1.1	1.6	1.3	
6000	1.2	1.3	0.9	1.2	1.1	
8000	0.9	1.0	0.8	0.8	0.8	
10000	0.7	0.7	0.6	0.6	0.6	

Ambient Noise Levels

(Typical Measured Sound Levels)

Location/Source	Leq (dBA)	Lmax (dBA)
Underground Stations, Ambient	65 – 75	75 - 85
(Existing BRT, 5 min sample)		
Above Ground Stations, Ambient	65 – 75	75 - 85
(Existing street traffic, 5 min sample)		
Underground Stations, Discrete Events	70 - 75	80 - 85
(Existing BRT, 10 sec. sample)		
Underground Stations, Discrete Events	75 - 85	80 - 90
(Existing LRT, 10 sec. sample)		
Above Ground Stations, Discrete Events	65 – 75	75 - 85
(Existing LRT, 10 sec. sample)		

PA System Design Concepts

- 1. Well placed, high quality speakers
- 2. Highly distributed reinforcement system
- 3. Employ automatically adjusting levels that take into account background level
- 4. Augment/integrate with visual paging
- 5. Employ appropriate noise control and acoustical absorption

PA System Design Constraints

- 1. Speaker placement dictated by Architect
- 2. High ambient sound levels (predicted by the Owner)
- 3. Owner reluctance to add acoustical absorption

System Design Tools

3D Computer Modeling:

- •Simulate architectural/acoustic environment
- •Predict system performance mappings
- •Auralization simulate performance aurally

Models & Mappings

Models & Mappings

Models & Mappings

Advanced Techniques

Use of powerful computer models and simulations:

- Predict STI per IEC 60268-16
- Simulate system performance aurally with advanced binaural response and convolution algorithms

Conclusions

- Cavernous, hard station environments presented challenging PA system design task.
- Project constraints with respect to acoustical and PA system design options further limited system performance.
- Computer analysis predictions suggest that in most cases PA system will just marginally satisfy project requirements, but still a substantial improvement over the existing system.

Acentech